陈彬

个人信息

Personal information

学位:博士
职称:副教授

扫描关注

Scan attention

研究方向及兴趣

 实验室配备高温原位FIB-SEM表征测试平台、电化学-力学原位测试平台,标方级催化制氢-储氢测试开发平台等国际顶尖研发设备50余套,团队成员在Nature,Cell子刊, Chemical Engineering Journal ,Applied Energy, Science Bulletin等国际顶尖学术期刊发表论文100余篇,授权/申请发明专利20余项。


1.png

实验室一览


实验室成员:


         

        联合培养博士生:  2018级   翟  朔;廖海龙;兰  铖

                                     2021级   郝森然;付 令

        

        硕士生:        2020级   刘志鹏(推荐至香港理工大学攻读博士); 

                                            林魁武(比亚迪,新能源车研发); 

                                            李俊彪(留组工作)

                             2021级    彭麒琏曾   尚;  杨洪鑫(推荐至Curtin University 攻读博士)

                             2022级    朱浩杰游俊达

                             2023级    胡春芳马国庆;  叶远航


        联合培养研究生:    2023级    朱 静(浙江大学)    陈 聪(中科院工程热物理所)


        访问学者:袁荣华 博士

        

论文发表:

 

【2023】

  1. Jiang, Y., Xie, H., Han, L., Zhang, Y., Ding, Y., Shen, S., Chen, B., & Ni, M. (2023). Advances in TiS2 for energy storage, electronic devices, and catalysis: A review. Progress in Natural Science: Materials International, 33(2), 133–150. https://doi.org/10.1016/j.pnsc.2023.05.004

  2. Lin, K., Xie, H., Peng, Q., Zhang, Y., Shen, S., Jiang, Y., Ni, M., & Chen, B. (2023). Hydrogen production from seawater splitting enabled by on-line flow-electrode capacitive deionization. Renewable and Sustainable Energy Reviews, 183, 113525. https://doi.org/10.1016/j.rser.2023.113525

  3. Wang, R., Li, G., Ma, Y., Wang, T., Chen, B., Wei, T., & Dong, D. (2023). A high-performance hybrid direct carbon fuel cell with tandem catalysis in the dendritic channeled anode. International Journal of Hydrogen Energy, 48(26), 9797–9804. https://doi.org/10.1016/j.ijhydene.2022.12.014

  4. Xie, H., Liao, H., Zhai, S., Liu, T., Wu, Y., Wang, F., Li, J., Zhang, Y., & Chen, B. (2023). Enhancing Zn-CO2 battery with a facile Pd doped perovskite cathode for efficient CO2 to CO conversion. Energy, 263, 125688. https://doi.org/10.1016/j.energy.2022.125688

  5. Zhang, Y., Li, J., Xie, H., Liu, Z., Shen, S., Teng, Y., Guan, D., Zhai, S., Song, Y., Zhou, W., Chen, B., Ni, M., & Shao, Z. (2023). CO2-induced reconstruction for ORR-enhanced solid oxide fuel cell cathode. Chemical Engineering Journal, 462, 142216. https://doi.org/10.1016/j.cej.2023.142216

【2022】

  1. Bello, I. T., Zhai, S., He, Q., Cheng, C., Dai, Y., Chen, B., Zhang, Y., & Ni, M. (2022). Materials development and prospective for protonic ceramic fuel cells. International Journal of Energy Research, 46(3), 2212–2240. https://doi.org/10.1002/er.7371

  2. Chen, B., Xie, H., Liu, T., Lan, C., Lin, K., & Zhang, Y. (2022). Principles and Progress of Advanced Hydrogen Production Technologies in the Context of Carbon Neutrality. Advanced Engineering Science, 54(1), 106–116. https://doi.org/10.15961/j.jsuese.202100686

  3. Guan, D., Zhong, J., Xu, H., Huang, Y.-C., Hu, Z., Chen, B., Zhang, Y., Ni, M., Xu, X., Zhou, W., & Shao, Z. (2022). A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Applied Physics Reviews, 9, 011422. https://doi.org/10.1063/5.0083059

  4. Lan, C., Xie, H., Wu, Y., Chen, B., & Liu, T. (2022). Nanoengineered, Mo-Doped, Ni 3 S 2 Electrocatalyst with Increased Ni–S Coordination for Oxygen Evolution in Alkaline Seawater. Energy & Fuels, 36(5), 2910–2917. https://doi.org/10.1021/acs.energyfuels.1c04354

  5. Liu, F., Wang, T., Li, J., Wei, T., Ye, Z., Dong, D., Chen, B., Ling, Y., & Shao, Z. (2022). Elevated-temperature bio-ethanol-assisted water electrolysis for efficient hydrogen production. Chemical Engineering Journal, 434, 134699. https://doi.org/10.1016/j.cej.2022.134699

  6. Wang, R., Wang, T., Ma, Y., Wei, T., Ye, Z., Chen, B., & Dong, D. (2022). Control of carbon deposition over methane-fueled SOFCs through tuning the O / C ratio at the anode / electrolyte interface. Journal of Power Sources, 544, 231854. https://doi.org/10.1016/j.jpowsour.2022.231854

  7. XieHeping, LiuTao, WuYifan, WangYunpeng, ChenBin, & LiaoHailong. (2022). Progress and Prospect of CO2 Energy Utilization Technology. Advanced Engineering Sciences, 54(1), 145–156. https://doi.org/10.15961/j.jsuese.202100680

  8. Yuan, R., Chen, B., Zhang, Y., Tan, F., & Liu, T. (2022). Boosting the bifunctional electrocatalytic activity of cobalt free perovskite oxide (La0.8Sr0.2)0.95MnO3 via iron doping for high-efficiency Zn–air batteries. Separation and Purification Technology, 300, 121858. https://doi.org/10.1016/j.seppur.2022.121858

  9. Zhai, S., Xie, H., Chen, B., & Ni, M. (2022). A rational design of FeNi alloy nanoparticles and carbonate-decorated perovskite as a highly active and coke-resistant anode for solid oxide fuel cells. Chemical Engineering Journal, 430, 132615. https://doi.org/10.1016/j.cej.2021.132615

  10. Zhai, S., Xie, H., Cui, P., Guan, D., Wang, J., Zhao, S., Chen, B., Song, Y., Shao, Z., & Ni, M. (2022). A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nature Energy, 7(9), 866–875. https://doi.org/10.1038/s41560-022-01098-3

【2021】

  1. Fan, D., Gao, Y., Liu, F., Wei, T., Ye, Z., Ling, Y., Chen, B., Zhang, Y., Ni, M., & Dong, D. (2021). Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation. Journal of Power Sources, 513, 230536. https://doi.org/10.1016/j.jpowsour.2021.230536

  2. Li, T., Wang, T., Wei, T., Hu, X., Ye, Z., Wang, Z., Dong, D., Chen, B., Wang, H., & Shao, Z. (2021). Robust AnodeSupported Cells with Fast Oxygen Release Channels for Efficient and Stable CO 2 Electrolysis at Ultrahigh Current Densities. Small, 17(6), 2007211. https://doi.org/10.1002/smll.202007211

  3. Xie, H., Wang, F., Liu, T., Wu, Y., Lan, C., Chen, B., Zhou, J., & Chen, B. (2021). Copper−iron dimer for selective C–C coupling in electrochemical CO2 reduction. Electrochimica Acta, 380, 138188. https://doi.org/10.1016/j.electacta.2021.138188

  4. Xie, H., Zhai, S., Liu, T., Liao, H., Zhang, Y., Zhou, W., Shao, Z., Ni, M., & Chen, B. (2021). Cu-modified Ni foams as three-dimensional outer anodes for high-performance hybrid direct coal fuel cells. Chemical Engineering Journal, 410, 128239. https://doi.org/10.1016/j.cej.2020.128239

  5. Yu, W., Shang, W., Xiao, X., Ma, Y., Chen, Z., Chen, B., Xu, H., Ni, M., & Tan, P. (2021). Elucidating the mechanism of discharge performance improvement in zinc-air flow batteries: A combination of experimental and modeling investigations. Journal of Energy Storage, 40, 102779. https://doi.org/10.1016/j.est.2021.102779

  6. Zhang, Y., Chen, B., Guan, D., Xu, M., Ran, R., Ni, M., Zhou, W., O’Hayre, R., & Shao, Z. (2021). Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 591(7849), 246–251. https://doi.org/10.1038/s41586-021-03264-1

【2020】

  1. Wang, F., Xie, H., Liu, T., Wu, Y., & Chen, B. (2020). Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential. Applied Energy, 269, 115029. https://doi.org/10.1016/j.apenergy.2020.115029

  2. Wu, Z., Zhu, P., Yao, J., Tan, P., Xu, H., Chen, B., Yang, F., Zhang, Z., & Ni, M. (2020). Thermo-economic modeling and analysis of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for stationary electricity power generation. Energy, 192, 116613. https://doi.org/10.1016/j.energy.2019.116613

  3. Xiao, X., Shang, W., Yu, W., Ma, Y., Tan, P., Chen, B., Kong, W., Xu, H., & Ni, M. (2020). Toward the rational design of cathode and electrolyte materials for aprotic LiCO 2 batteries: A numerical investigation. International Journal of Energy Research, 44(1), 496–507. https://doi.org/10.1002/er.4952

  4. Xie, H., Gao, X., Liu, T., Chen, B., Wu, Y., & Jiang, W. (2020). Electricity generation by a novel CO 2 mineralization cell based on organic proton-coupled electron transfer. Applied Energy, 261, 114414. https://doi.org/10.1016/j.apenergy.2019.114414

  5. Xie, H., Jiang, W., Liu, T., Wu, Y., Wang, Y., Chen, B., Niu, D., & Liang, B. (2020). Low-Energy Electrochemical Carbon Dioxide Capture Based on a Biological Redox Proton Carrier. Cell Reports Physical Science, 1(5), 100046. https://doi.org/10.1016/j.xcrp.2020.100046

  6. Xie, H., Lan, C., Chen, B., Wang, F., & Liu, T. (2020). Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Research, 13(12), 3321–3329. https://doi.org/10.1007/s12274-020-3010-7

  7. Xie, H., Wu, Y., Liu, T., Wang, F., Chen, B., & Liang, B. (2020). Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium. Applied Energy, 259, 114119. https://doi.org/10.1016/j.apenergy.2019.114119

  8. Xie, H., Zhai, S., Chen, B., Liu, T., Zhang, Y., Ni, M., & Shao, Z. (2020). Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell. Applied Energy, 260, 114197. https://doi.org/10.1016/j.apenergy.2019.114197

  9. Yan, H., Wang, G., Lu, Z., Tan, P., Kwan, T. H., Xu, H., Chen, B., Ni, M., & Wu, Z. (2020). Techno-economic evaluation and technology roadmap of the MWe-scale SOFC-PEMFC hybrid fuel cell system for clean power generation. Journal of Cleaner Production, 255, 120225. https://doi.org/10.1016/j.jclepro.2020.120225

  10. Yan, H., Wang, G., Lu, Z., Tan, P., Kwan, T. H., Xu, H., Chen, B., Ni, M., & Wu, Z. (2020). Techno-economic evaluation and technology roadmap of the MWe-scale SOFC-PEMFC hybrid fuel cell system for clean power generation. Journal of Cleaner Production, 255, 120225. https://doi.org/10.1016/j.jclepro.2020.120225

【2019】

  1. Chen B., Hajimolana, Y. S., Venkataraman, V., Ni, M., & Aravind, P. V. (2019). Integration of Reversible Solid Oxide Cells with methane synthesis (ReSOC-MS) in grid stabilization. Energy Procedia, 158(2018), 2077–2084. https://doi.org/10.1016/j.egypro.2019.01.479

  2. Cai, W., Liu, J., Liu, P., Liu, Z., Xu, H., Chen, B., Li, Y., Zhou, Q., Liu, M., & Ni, M. (2019). A direct carbon solid oxide fuel cell fueled with char from wheat straw. International Journal of Energy Research, 43(7), 2468–2477. https://doi.org/10.1002/er.3968

  3. Cai, W., Liu, P., Chen, B., Xu, H., Liu, Z., Zhou, Q., Yu, F., Liu, M., Chen, M., Liu, J., & Ni, M. (2019). Plastic waste fuelled solid oxide fuel cell system for power and carbon nanotube cogeneration. International Journal of Hydrogen Energy, 44(3), 1867–1876. https://doi.org/10.1016/j.ijhydene.2018.11.159

  4. Cai, W., Liu, P., Chen, B., Xu, H., Liu, Z., Zhou, Q., Yu, F., Liu, M., Chen, M., Liu, J., & Ni, M. (2019). Plastic waste fuelled solid oxide fuel cell system for power and carbon nanotube cogeneration. International Journal of Hydrogen Energy, 44(3), 1867–1876. https://doi.org/10.1016/j.ijhydene.2018.11.159

  5. Chen, B., Hajimolana, Y. S., Venkataraman, V., Ni, M., & Aravind, P. V. (2019). Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation. Applied Energy, 250, 558–567. https://doi.org/10.1016/j.apenergy.2019.04.162

  6. Chen, B., Hajimolana, Y. S., Venkataraman, V., Ni, M., & Aravind, P. V. (2019). Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation. Applied Energy, 250, 558–567. https://doi.org/10.1016/j.apenergy.2019.04.162

  7. Chen, B., Xu, H., Zhang, Y., Dong, F., Tan, P., Zhao, T., & Ni, M. (2019). Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generationCombined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generat. International Journal of Hydrogen Energy, 44(29), 15313–15321. https://doi.org/10.1016/j.ijhydene.2019.02.244

  8. Shang, W., Yu, W., Tan, P., Chen, B., Xu, H., & Ni, M. (2019). A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode. Journal of Power Sources, 421(4), 6–13. https://doi.org/10.1016/j.jpowsour.2019.02.097

  9. Shang, W., Yu, W., Tan, P., Chen, B., Xu, H., & Ni, M. (2019). A high-performance Zn battery based on self-assembled nanostructured NiCo 2 O 4 electrode. Journal of Power Sources, 421, 6–13. https://doi.org/10.1016/j.jpowsour.2019.02.097

  10. Tan, P., Chen, B., Xu, H., Cai, W., He, W., & Ni, M. (2019). In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Applied Catalysis B: Environmental, 241, 104–112. https://doi.org/10.1016/j.apcatb.2018.09.017

  11. Tan, P., Chen, B., Xu, H., Cai, W., He, W., & Ni, M. (2019). Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability. Energy, 166, 1241–1248. https://doi.org/10.1016/j.energy.2018.10.161

  12. Tan, P., Wu, Z., Chen, B., Xu, H., Cai, W., Jin, S., Shao, Z., & Ni, M. (2019). Cation-Substitution-Tuned Oxygen Electrocatalyst of Spinel Cobaltite MCo 2 O 4 (M = Fe, Co, and Ni) Hexagonal Nanoplates for Rechargeable Zn-Air Batteries. Journal of The Electrochemical Society, 166(14), A3448–A3455. https://doi.org/10.1149/2.1311914jes

  13. Tan, P., Wu, Z., Chen, B., Xu, H., Cai, W., & Ni, M. (2019). Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions. Electrochimica Acta, 310, 86–95. https://doi.org/10.1016/j.electacta.2019.04.126

  14. Wu, Z., Tan, P., Chen, B., Cai, W., Chen, M., Xu, X., Zhang, Z., & Ni, M. (2019). Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK. Energy, 175, 567–579. https://doi.org/10.1016/j.energy.2019.03.119

  15. Xu, H., Chen, B., Tan, P., Sun, Q., Maroto-Valer, M. M., & Ni, M. (2019). Modelling of a hybrid system for on-site power generation from solar fuels. Applied Energy, 240, 709–718. https://doi.org/10.1016/j.apenergy.2019.02.091

  16. Xu, H., Chen, B., Tan, P., Sun, Q., Maroto-Valer, M. M., & Ni, M. (2019). Modelling of a hybrid system for on-site power generation from solar fuels. Applied Energy, 240, 709–718. https://doi.org/10.1016/j.apenergy.2019.02.091

  17. Xu, H., Chen, B., Tan, P., Xuan, J., Maroto-Valer, M. M., Farrusseng, D., Sun, Q., & Ni, M. (2019). Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design. Applied Energy, 235, 602–611. https://doi.org/10.1016/j.apenergy.2018.10.069

  18. Xu, H., Chen, B., Tan, P., Zhang, Y., He, Q., Wu, Z., & Ni, M. (2019). The thermal effects of all porous solid oxide fuel cells. Journal of Power Sources, 440, 227102. https://doi.org/10.1016/j.jpowsour.2019.227102

  19. Yu, W., Shang, W., Tan, P., Chen, B., Wu, Z., Xu, H., Shao, Z., Liu, M., & Ni, M. (2019). Toward a new generation of low cost, efficient, and durable metal–air flow batteries. Journal of Materials Chemistry A, 7(47), 26744–26768. https://doi.org/10.1039/C9TA10658H

【2018】

  1. Chen, B., Xu, H., Sun, Q., Zhang, H., Tan, P., Cai, W., He, W., & Ni, M. (2018). Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study. Energy Conversion and Management, 167, 37–44. https://doi.org/10.1016/j.enconman.2018.04.078

  2. Tan, P., Chen, B., Xu, H., Cai, W., He, W., Liu, M., Shao, Z., & Ni, M. (2018). Co 3 O 4 Nanosheets as Active Material for Hybrid Zn Batteries. Small, 14(21), 1800225. https://doi.org/10.1002/smll.201800225

  3. Tan, P., Chen, B., Xu, H., Cai, W., He, W., & Ni, M. (2018). Investigation on the electrode design of hybrid Zn-Co 3 O 4 /air batteries for performance improvements. Electrochimica Acta, 283, 1028–1036. https://doi.org/10.1016/j.electacta.2018.07.039

  4. Tan, P., Chen, B., Xu, H., Cai, W., He, W., Zhang, H., Liu, M., Shao, Z., & Ni, M. (2018). Integration of Zn–Ag and Zn–Air Batteries: A Hybrid Battery with the Advantages of Both [Research-article]. ACS Applied Materials & Interfaces, 10(43), 36873–36881. https://doi.org/10.1021/acsami.8b10778

  5. Tan, P., Chen, B., Xu, H., Cai, W., Liu, M., Shao, Z., & Ni, M. (2018). Nanoporous NiO/Ni(OH) 2 Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability. Journal of The Electrochemical Society, 165(10), A2119–A2126. https://doi.org/10.1149/2.0481810jes

  6. Xu, H., Chen, B., Tan, P., Cai, W., He, W., Farrusseng, D., & Ni, M. (2018). Modeling of all porous solid oxide fuel cells. Applied Energy, 219, 105–113. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.037

  7. Xu, H., Chen, B., Tan, P., Cai, W., Wu, Y., Zhang, H., & Ni, M. (2018). A feasible way to handle the heat management of direct carbon solid oxide fuel cells. Applied Energy, 226, 881–890. https://doi.org/10.1016/j.apenergy.2018.06.039

  8. Xu, H., Chen, B., Tan, P., Zhang, H., Yuan, J., Irvine, J. T. S., & Ni, M. (2018). Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine. Energy Conversion and Management, 165, 761–770. https://doi.org/10.1016/j.enconman.2018.04.008

  9. Xu, H., Chen, B., Zhang, H., Tan, P., Yang, G., Irvine, J. T. S., & Ni, M. (2018). Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction. Journal of Power Sources, 382, 135–143. https://doi.org/10.1016/j.jpowsour.2018.02.033

  10. Yang, Z., Xu, H., Chen, B., Tan, P., Zhang, H., & Ni, M. (2018). Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell. Energy Conversion and Management, 171, 279–286. https://doi.org/10.1016/j.enconman.2018.05.100

【2017】

  1. Chen, B., Xu, H., & Ni, M. (2017). Modelling of SOEC-FT reactor: Pressure effects on methanation process. Applied Energy, 185, 814–824. https://doi.org/10.1016/j.apenergy.2016.10.095

  2. Chen, B., Xu, H., Zhang, H., Tan, P., Cai, W., & Ni, M. (2017). A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage – A dynamic simulation study. Applied Energy, 200, 260–272. https://doi.org/10.1016/j.apenergy.2017.05.089

  3. Tan, P., Chen, B., Xu, H., Zhang, H., Cai, W., Ni, M., Liu, M., & Shao, Z. (2017). Flexible Zn- and Li-Air Batteries: Recent Advances, Challenges, and Future Perspectives. Energy Environ. Sci., 10, 2056–2080. https://doi.org/10.1039/C7EE01913K

  4. Tan, P., Ni, M., Chen, B., Kong, W., Kong, W., & Shao, Z. (2017). Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product. Applied Energy, 203, 254–266. https://doi.org/10.1016/j.apenergy.2017.05.185

  5. Xu, H., Chen, B., Tan, P., Zhang, H., Yuan, J., Liu, J., & Ni, M. (2017). Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle. Energy, 140, 979–987. https://doi.org/10.1016/j.energy.2017.09.036

  6. Xu, H., Chen, B., Zhang, H., Kong, W., Liang, B., & Ni, M. (2017). The thermal effect in direct carbon solid oxide fuel cells. Applied Thermal Engineering, 118, 652–662. https://doi.org/10.1016/j.applthermaleng.2017.03.027

  7. Xu, H., Chen, B., Zhang, H., Sun, Q., Yang, G., & Ni, M. (2017). Modeling of direct carbon solid oxide fuel cells with H 2 O and CO 2 as gasification agents. International Journal of Hydrogen Energy, 42(23), 15641–15651. https://doi.org/10.1016/j.ijhydene.2017.05.075

  8. Zhang, H., Kong, W., Dong, F., Xu, H., Chen, B., & Ni, M. (2017). Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management, 148, 1382–1390. https://doi.org/10.1016/j.enconman.2017.06.089

  9. Zhang, H., Xu, H., Chen, B., Dong, F., & Ni, M. (2017). Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells. Energy, 132, 280–288. https://doi.org/10.1016/j.energy.2017.05.005

【2016】

  1. Chen, B., Xu, H., Chen, L., Li, Y., Xia, C., & Ni, M. (2016). Modelling of One-Step Methanation Process Combining SOECs and Fischer-Tropsch-like Reactor. Journal of The Electrochemical Society, 163(11), F3001–F3008. https://doi.org/10.1149/2.0011611jes

  2. Chen, B., Xu, H., & Ni, M. (2016). Modelling of finger-like channelled anode support for SOFCs application. Science Bulletin, 61(17), 1324–1332. https://doi.org/10.1007/s11434-016-1131-x

  3. Xu, H., Chen, B., Irvine, J., & Ni, M. (2016). Modeling of CH4-assisted SOEC for H2O/CO2co-electrolysis. International Journal of Hydrogen Energy, 41(47), 21839–21849. https://doi.org/10.1016/j.ijhydene.2016.10.026

  4. Xu, H., Chen, B., Liu, J., & Ni, M. (2016). Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration. Applied Energy, 178, 353–362. https://doi.org/10.1016/j.apenergy.2016.06.064

  5. Xu, H., Chen, B., & Ni, M. (2016). Modeling of Direct Carbon-Assisted Solid Oxide Electrolysis Cell (SOEC) for Syngas Production at Two Different Electrodes. Journal of The Electrochemical Society, 163(11), F3029–F3035. http://jes.ecsdl.org/lookup/doi/10.1149/2.0041611jes

  6. Zhang, H., Chen, B., Xu, H., & Ni, M. (2016). Thermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applications. International Journal of Refrigeration, 70, 1–12. https://doi.org/10.1016/j.ijrefrig.2016.07.011

  7. Zhang, X., Ni, M., Dong, F., He, W., Chen, B., & Xu, H. (2016). Thermodynamic analysis and performance optimization of solid oxide fuel cell and refrigerator hybrid system based on H 2 and CO. Applied Thermal Engineering, 108, 347–352. https://doi.org/10.1016/j.applthermaleng.2016.07.096